Results of the BCI Competition III

[Berlin]

Benjamin Blankertz, Guido Dornhege, Klaus-Robert Müller

[Albany]

Gerwin Schalk, Dean Krusienski, Jonathan R. Wolpaw

[Graz]

Alois Schlögl, Bernhard Graimann, Gert Pfurtscheller

[Martigny]

Silvia Chiappa, José del R. Millán

[Tübingen]

Michael Schröder, Thilo Hinterberger, Thomas Navin Lal, Guido Widman, Niels Birbaumer

BCI Competition – Introduction

Goal: validate signal processing and classification methods for Brain-Computer Interfaces.

	date	#datasets	#submissions	#labs
BCI Competition I	2001/2002	3	10	8
BCI Competition II	2002/2003	6	57	20
BCI Competition III	2004/2005	8	92	49

Actual Problems in BCI Research

Problems in BCI system design:

- session-to-session transfer
- subject-to-subject transfer (resp. cope with small training sets)
- non-stationary signals: need for adaptivity
- have an idle signal when subject is in idle state
- classify continuous data rather than single-trials
- make BCI work for all subjects, not only selected good ones

Problems in evaluation:

- offline evaluations of methods may be biased (overestimate generalization ability)
- results may be reported from selected subjects (data set selection)

Problems not addressed by this competition:

- transfer of methods and paradigms from offline analyses to feedback applications
- human and machine as two mutually adapting systems

Data Sets - Overview

- Data set I (Tübingen): motor imagery in ECoG recordings, session-to-session transfer
- Data set II (Albany): P300 speller paradigm
- Data sets IIIa (Graz): motor imagery, multi-class, good vs. fair subject performance
- Data sets IIIb (Graz): motor imagery with non-stationarity problem
- Data set IVa (Berlin): motor imagery, small training sets
- Data set IVb (Berlin): motor imagery, uncued classifier application
- Data set IVc (Berlin): motor imagery, test data contains 'rest' trials
- Data set V (Martigny): mental imagery, multi-class, uncued classifier application

Data Set I – Tübingen

»motor imagery in ECoG recordings, session-to-session transfer«

- Train a classifier on data of one day, apply it to data of a different day.
- Watch out for non-stationarities!

Data Set I – Tübingen

Perf: accuracy [%], Chance: 50%, submissions: 27

#.	contributor	acc	research lab	co-contributors
1.	Qingguo Wei	91	Tsinghua University, Beijing	Fei Meng, Yijun Wang, Shang- kai Gao
2.	Paul Hammon	87	University of California, San Diego	
3.	Michal Sapinski	86	No affiliation, Poland	
3.	Mao Dawei	86	Zhejiang University, P.R.C.	Ke Daguan, Xie Mingqiang, Ding Jichang, Zheng Kening, Zhou Jie, Murat
3.	Alexander D'yakonov	86	Moscow State University	
3.	Liu Yang	86	National University of Defense Technology Changsha, P.R.C.	Hu Dewen, Zhou Zongtan, Zang Guohua

Data Set I – Tübingen

Winning Method:

[Qingguo Wei, Fei Meng, Yijun Wang, Shangkai Gao]

- Two DC (0–3 Hz) and one broad band (8–30 Hz) features
- CSSD: Common Spatial Subspace Decomposition
- FDA: Fisher Discriminant Analysis
- Fusion by linear Support Vector Machine (SVM)

Data Set II – Albany

»P300 speller paradigm«

- Combine multiple binary classifiers to one 36-class classifier
- Multi-modal target class (ERP depends on previous trials)

Data Set II – Albany

Perf: accuracy [%] using all 15 repetitions, chance: 2.8%, 10 submissions

#.	contributor	acc	acc5	research lab	co-contributors
1.	Alain Rokotomamonj	96.5	73.5	PSI CNRS FRE-2645, INSA de Rouen, France	V. Guigue
2.	Li Yandong	90.5	55.0	Department of Automation Department of Biomedical Engineering, Tsinghua University, China	Gao Xiaorong, Ma Zhongwei, Lin Zhong- lin, Lu Wenkai, Hong Bo
3.	Zhou Zongtan	90.0	59.5	Department of Automatic Control, National University of Defense Technology, China	Liu Yang, Hu Dewen, Zang Guohu
4.	Ulrich Hoffmann	89.5	53.0	Signal Processing Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland	
5.	Lin Zhonglin	87.5	57.5	Department of Automation, Tsinghua University, China	Zhang Changshui, Gao Xiaorong, Zhou Jieyun

Data Set II – Albany

Winning Method:

[Alain Rokotomamonj, V. Guigue]

- band-pass filter 0.1–20 Hz, decimation
- cluster BCI signals by 900 signals (?)
- Mixture of 17 SVMs:
- Channel selection for each SVM by criterion TP/(TP+FP+FN).
- Summing SVM scores of all SVMs for all coloumns resp. rows and picking the max.

Data Set IIIa - Graz

»motor imagery, multi-class, good vs. fair subject performance«

- multi-channel EEG
- multi-class problem
- subjects with good and with fair performance

Data Set IIIa - Graz

Perf: kappa (scaled accuracy with #classes), chance: 0, submissions: 3

#.	contributor	kappa	K3	K6	L1	research lab	co- contributors
1.	Cuntai Guan	0.79	0.82	0.76	0.80	Neural Signal Processing Lab Institute for Infocomm Rese- arch, Singapore	Haihong Zhang, Yuanqin Li
2.	Gao Xiaorong	0.69	0.90	0.43	0.71	Tsinghua University, Beijing, China	Wu Wei, Wang Ruiping, Yang Fusheng
3.	Jeremy Hill	0.63	0.95	0.41	0.52	Max Planck Institute for Biological Cybernetics, Tuebingen and Tuebingen University	Michael Schro- eder

Data Set IIIa - Graz

Winning Method:

[Cuntai Guan, Haihong Zhang, Yuanqin Li]

- Preprocessing. (?)
- Calculating Fisher ratios over discreted channel-frequency-time bins, using the training data.
- ullet select optimal time sections and channels, and design Mu and Beta passband filters in each section.
- Doing multi-class CSP (with one-against-rest method) on each Mu or Beta band in each time section.
- Combining all CSP features by an SVM

Data Set IIIb - Graz

»motor imagery with non-stationarity problem«

- only 2 channels available
- non-stationary signals (depends on selected features)

C4: Averaged Spectra (μ -band)

C4: Chronological Subaverages

Data Set IIIb - Graz

Perf: MI/t (max. steepness of mutual information), chance: 0, submissions: 7

#.	contributor	MI/t	О3	S4	X11	research lab	co-contributors
1.	S. Lemm	0.32	0.17	0.44	0.35	Fraunhofer (FIRST) IDA, Berlin Germany	
2.	O. Burmeister	0.25	0.16	0.42	0.17	Forschungszentrum Karlsruhe, Germany	M. Reischl, R. Mi- kut
3.	Xiaomei Pei	0.14	0.20	0.09	0.12	Institute of Biomedical Enginee- ring of Xian Jiaotong University, Xian, China	Guangyu Bin

Data Set IIIb - Graz

Winning Method:

[Steven Lemm]

- combined ERP and (alpha, beta) ERD features.
- Training of weak classifiers:
 - o (posterior of two multivariate Gaussian distribution) at each time instance.
- Classifier combination over time:
 - o using the Bayes error to estimate the discriminative power of each classifier.

Data Set IVa - Berlin

»motor imagery, small training sets«

- data from five subjects
- for some subjects only small training set available
- subject-to-subject transfer despite inter-subject variability?

Data Set IVa - Berlin

Perf: overall accuracy [%], chance: 50%, submissions: 14

#.	contributor	acc	aa	al	av	aw	ay	research lab	co-contributors
1.	Yijun Wang	94.2	96	100	81	100	98	Tsinghua University, Beijing	Han Yuan, Dan Zhang, Xiaorong Gao, Zhiguang Zhang, Shangkai Gao
2.	Yuanqing Li	85.1	89	98	76	92	81	Institute for Infocomm Research, Singapore	Xiaoyuan Zhu, Cun- tai Guan
3.	Liu Yang	83.5	82	95	70	88	88	National University of Defense Technology, Changsha, Hunan	Zhou Zongtan, Zang Guohua, Hu Dewen

Data Set IVa – Berlin

Winning Method:

[Yijun Wang, Han Yuan, Dan Zhang, Xiaorong Gao, Zhiguang Zhang, Shangkai Gao]

- 3 features have been used:
 - ERD-feature extracted by Common Spatial Pattern (CSP)
 - ERD-feature extracted with AR model
 - LRP-feature extracted by LDA on temporal waves
- for subjects *aa* and *av*: combine 3 features
- for other subjects: CSP-feature only
- bootstrap aggregation (bagging) for ultimate decision
- for smallest training sets (aw, ay): add formerly classified test samples to training samples

Data Set IVb – Berlin

»motor imagery, uncued classifier application«

The Thrill:

- test data is continuous EEG without cues
- test data contains periods of relaxing
- length of motor imagery periods varies

There was only one submission to this data set.

For that reason the competition is not evaluated for this data set.

Data Set IVc - Berlin

»motor imagery, rest class in test, but not in training data«

- test data contains class 'relax'
- no training data for relax available

Data Set IVc - Berlin

Perf: mean square error (mse), constant 0 output: $0.\overline{6}$, submissions: 7

#.	contributor	mse	research lab	co-contributors
1.	Dan Zhang	0.30	Department of Biomedical Engineering, Tsinghua University, Beijing	Yijun Wang
2.	Liu Yang	0.59	National University of Defense Technology, Changsha, Hunan	Hu Dewen, Zhou Zongtan, Zang Guohua
3.	Zhou Zongtan	0.60	National University of Defense Technology, Changsha, Hunan	Hu Dewen, Liu Yang

Data Set IVc - Berlin

Winning Method:

[Dan Zhang, Yijun Wang]

- ERD-features
- extracted by Common Spatial Subspace Decomposition (CSSD)
- classification: Fisher Discriminant Analysis (FDA)
- first-pass: detect *relax* trials on prolonged windows
- second-pass: classify remaining trials into *left* vs. *right*

Data Set V – Martigny

»mental imagery, multi-class, uncued classifier application«

The Thrill:

• test data is continuous EEG without cues

Data Set V – Martigny

Perf: **accuracy** [%], chance: $33.\overline{3}\%$, submissions: 19

#.	contributor	psd	acc	s1	s2	s3	research lab	co-contributors
1.	Ferran Galan	у	68.7	80	70	56	University of Barcelona	Francesc Oliva, Jo- an Guardia
2.	Xiang Liao	у	68.5	78	72	56	University of Electronic Science and Technology of China (UESTC)	Yu Yin, Dezhong Yao
3.	Walter	٧	65.9	78	66	53	???	

Data Set V (raw data) – Martigny

Winning Method:

[Ferran Gelán, Francesc Oliva, Joan Guàrdia]

- normalization of PSD features
- feature selection by Fisher's Discriminant (multi-class version)
- 'distance based' discriminator
- controller process for post-processing

All Winners

Congratulations!

data set	research lab	contributor(s)
1	Tsinghua University, Beijing, China	Qingguo Wei , Fei Meng, Yijun Wang, Shangkai Gao
П	PSI CNRS FRE-2645, INSA de Rouen, France	Alain Rokotomamonj, V. Guigue
Illa	Neural Signal Processing Lab Institute for Infocomm Research, Singapore	Cuntai Guan, Haihong Zhang, Yuanqin Li
IIIb	Fraunhofer (FIRST) IDA, Berlin, Germany	Steven Lemm
IVa	Tsinghua University, Beijing, China	Yijun Wang , Han Yuan, Dan Zhang, Xiaorong Gao, Zhiguang Zhang, Shangkai Gao
IVc	Tsinghua University, Beijing, China	Dan Zhang, Yijun Wang
V	University of Barcelona	Ferran Galan, Francesc Oliva, Joan Guardia